Roles of Exc protein and DNA homology in the CTnDOT excision reaction.

نویسندگان

  • Carolyn M Keeton
  • Jeffrey F Gardner
چکیده

Excision from the chromosome is the first step during the transfer of conjugative transposons (CTns) to a recipient. We previously showed that the excision of CTnDOT is more complex than the excision of lambdoid phages and CTns such as Tn916. The excision in vivo of CTnDOT utilizes four CTnDOT-encoded proteins, IntDOT, Xis2c, Xis2d, and Exc, and a host factor. We previously developed an in vitro excision reaction where the recombination sites attL and attR were located on different plasmids. The reaction was inefficient and did not require Exc, suggesting that the reaction conditions did not mimic in vivo conditions. Here, we report the development of an intramolecular excision reaction where the attL and attR sites are located on the same DNA molecule. We found that Exc stimulates the reaction 3- to 5-fold. The efficiency of the excision reaction was also dependent on the distance between the attL and attR sites and on the sequences of the overlap regions between the sites of the strand exchanges. Substrates with identical overlap sequences recombined more efficiently than ones with heterologous overlap sequences. This was surprising, because the integration reaction is not sensitive to heterology in the overlap regions of the attDOT and attB sites.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Regulation of excision genes of the Bacteroides conjugative transposon CTnDOT.

The first step in the transfer of the Bacteroides conjugative transposon CTnDOT is excision of the integrated element from the chromosome to form a circular transfer intermediate. Excision occurs only after the bacteria are exposed to tetracycline. Previously, four excision genes were identified. One was the integrase gene intDOT, which appeared to be expressed constitutively. Three other genes...

متن کامل

Characterization of genes involved in modulation of conjugal transfer of the Bacteroides conjugative transposon CTnDOT.

In previous studies we identified an 18-kb region of the Bacteroides conjugative transposon CTnDOT that was sufficient for mobilization of coresident plasmids and unlinked integrated elements, as well as self-transfer from Bacteroides to Escherichia coli. When this 18-kb region was cloned on a plasmid (pLYL72), the plasmid transferred itself constitutively in the absence of a coresident conjuga...

متن کامل

Tetracycline-associated transcriptional regulation of transfer genes of the Bacteroides conjugative transposon CTnDOT.

Many human colonic Bacteroides spp. harbor a conjugative transposon, CTnDOT, which carries two antibiotic resistance genes, tetQ and ermF. A distinctive feature of CTnDOT is that its excision and transfer are stimulated by tetracycline. Regulation of the genes responsible for excision has been described previously. We provide here the first characterization of the regulation of CTnDOT transfer ...

متن کامل

Integration and excision of a Bacteroides conjugative transposon, CTnDOT.

Bacteroides conjugative transposons (CTns) are thought to transfer by first excising themselves from the chromosome to form a nonreplicating circle, which is then transferred by conjugation to a recipient. Earlier studies showed that transfer of most Bacteroides CTns is stimulated by tetracycline, but it was not known which step in transfer is regulated. We have cloned and sequenced both ends o...

متن کامل

Tetracycline-related transcriptional regulation of the CTnDOT mobilization region.

CTnDOT is a 65-kb conjugative transposon (CTn) in Bacteroides spp. that confers resistance to the antibiotics erythromycin and tetracycline (Tc). Conjugative transfer of CTnDOT is regulated upon exposure of cells to Tc. In the absence of Tc, no transfer is detectable; however, a cascade of regulatory events results in the conjugative transfer of CTnDOT upon Tc induction. Previous studies addres...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of bacteriology

دوره 194 13  شماره 

صفحات  -

تاریخ انتشار 2012